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The V–Si system has been assessed by Smith [1, 2], and

results were collected in recently published binary phase

diagram handbook [3]. The thermodynamic optimizations

for the system were also performed by Luoma [4], Rand

and Saunders [5]. However, the thermodynamic stability of

V6Si5 is still in question. Using the method of solid state

diffusion, Hallais et al. [6] noted that formation of V6Si5
could not be achieved below 1000 �C. By means of bulk

V–Si diffusion couples, Milanese et al. [7] found that there

is a nucleation barrier for the formation of V6Si5 at

1150 �C. Based on the electromotive force (emf) mea-

surement, Eremenko et al. [8] realized that the difficulty of

achieving an equilibrium state of V–Si alloys containing

the phase V6Si5 is indeed overdrawn. Using activity data

deduced from the Knudsen cell-mass spectrometry, Storms

and Myers [9] indicated the eutectoid decomposition tem-

perature (V6Si5,V5Si3 + VSi2) as 1160 ± 100 K. This

temperature was mistakenly regarded to be 1433 K

(1160 �C) in subsequent assessment [2] and thermody-

namic optimizations [4, 5]. Here we prepared several alloys

in the relevant composition ranges to investigate the ther-

modynamic stability of V6Si5. Additionally, a combined

first-principles/CALPHAD (CALculation of PHAse Dia-

grams) approach is adopted to predict the decomposition

temperature and a new set of thermodynamic parameters

for vanadium silicides is obtained.

Two alloys (V41Si59 and V73Si27, in atomic percent)

were prepared by arc-melting under argon, with 99.9%

purity V and 99.99% purity Si. The alloy V41Si59 was

annealed for 2 weeks at both 1000 �C and 700 �C. This

temperature range covers the upper and the lower limits of

the extrapolated decomposition temperature of V6Si5 [9].

The decomposition temperature is calculated to be 573 �C

from the Gibbs energy functions assessed by Smith [2].

Therefore, another piece of the alloy V41Si59 was heat-

treated at 500 �C for one month. The alloy V73Si27 was put

into the same batch at 1000 �C, with a desire to check the

possible contamination of interstitial elements. Every alloy

was sealed in evacuated silica tubes under vacuum of 10–3

bar and then water-quenched after annealing.

To our surprise, the alloys V41Si59 annealed at 1000 �C,

700 �C and 500 �C show a two-phase mixture of V6Si5 and

VSi2, according to X-ray powder diffraction (Fig. 1). This

result indicts that the decomposition temperature of V6Si5
is below 500 �C. As the diffraction pattern of the alloy

V73Si27 show that we obtained V3Si plus the tetragonal

D8m V5Si3 which will transform to the hexagonal D88 with

the addition of C, B, N and O [10], therefore, the con-

tamination of interstitial elements is excluded in present

experiments.

In order to further determine the relative stability of

V6Si5 in the T = 0 K ground state, the state-of-art first-

principles projector augmented plane-wave (PAW) calcu-

lations were applied to all intermetallic compounds of V–Si

system using Vienna ab initio simulation package (VASP)

[11, 12], together with the Perdew–Burke–Ernzerhof [13]

generalized gradient approximation for the exchange-

correlation potential. A plane-wave cutoff energy was set

to be 400 eV. k-point meshes for Brillouin zone sampling

were constructed using the Monkhorst–Pack [14] scheme,
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and extensive tests were performed (using from 5 · 5 · 5

to 15 · 15 · 15 grids). Both the unit cell sizes and the

ionic coordinates were fully relaxed to find the stable state.

The total energy differences were converged to within

0.1 kJ/mole-atoms.

The T = 0 K enthalpy of formation (per atom) of the

VpSiq can be calculated from the following equation:

DHf ðVpSiqÞ ¼ EðVpSiqÞ � ð1 � xÞEðVÞ � xEðSiÞ
ð1Þ

where E(V), E(Si) and E(VpSiq) are the calculated zero-

temperature total energies (per atom) of Bcc V, Diamond

Si and the corresponding intermetallic phase, respectively,

each relaxed to its equilibrium geometry. Here, x = q/

(p + q) is the atomic fraction of Si in these vanadium

silicides.

The calculated enthalpies of formation (DHf) are com-

pared with experimental data at room temperature (Fig. 2).

Except for VSi2, first-principles calculated formation en-

thalpies agree well with the values measured by Eremenko

et al. [8, 15, 16] using emf method. Recently, O’Hare et al.

[17] remeasured the enthalpy of formation of VSi2 by

means of fluorine combustion calorimetry. The measured

value of O’Hare et al. [17] is very close to the present first-

principles calculation. As shown in Fig. 2, first-principles

calculated DHf of V6Si5 falls above the tie-line between

those of V5Si3 and VSi2. This indicates that V6Si5 is

thermodynamically unstable at T = 0 K and its decompo-

sition temperature is higher.

Due to the formidable computational work at finite-

temperature and slow kinetics at low temperatures, an

efficiently combined first-principles/CALPHAD hybrid

method, which was well illustrated in Al–Sr system by

Wolverton et al. [18], is employed to estimate the

decomposition temperature of V6Si5. The Gibbs free en-

ergy for compound VpSiq is modeled as (J/mole-atoms)

GVpSiq ¼ ð1 � xÞoGV þ xoGSi þ a þ bT ð2Þ

where oGV and oGSi is the molar Gibbs energy of pure V

and Si in their stable structure at room temperature [19].

Accepting the parameters for liquid phase evaluated by

Luoma [4], we optimized the parameters a and b for VSi2,

V6Si5 and V5Si3 respectively using the information on the

congruent melting points and the invariant reactions [2].

The calculated enthalpies of formation at T = 0 K are set as

the starting values for parameter a and limited to vary

within ±1 kJ, which is the typical accuracy of first-princi-

ples calculations. All parameters generated in this work are

listed in Table 1.

The general agreement between the calculated phase

diagram in this work and that of Luoma [4] is excellent

(Fig. 3). The decomposition temperature of V6Si5 is pre-

dicted to be 460 �C which is consistent with the present

experimental result. Lozova et al. [20] did not find V6Si5 in

the presented isothermal section of the Li–V–Si system at

297 �C. Thus the real decomposition temperature of the

V6Si5 should be between 297 �C and 460 �C. Moreover, the

predicted phase stability diagram using the present param-

eters is in good agreement with the experimental data re-

ported by Storms and Myers [9] (Fig. 4). This is another

check of the reliability of the presently obtained parameters.

Fig. 2 First-principles calculated enthalpies of formation for the

compounds in the V–Si system, compared with the experimental data

of Eremenko et al. [8, 15, 16] and O’Hare et al. [17]

Table 1 The optimized parameters for vanadium silicides based on

the output of first-principles calculations and experimental phase

diagram data

Phase Eq. (2) a (J/mole-atoms) Eq. (2) b (J/mole-atoms�K)

VSi2 –45913.1 3.79418

V6Si5 –52220.5 4.44687

V5Si3 –55072.0 5.35583

Fig. 1 X-ray diffraction patterns of the alloys V41Si59 annealed at

1000 �C, 700 �C for 2 weeks and 500 �C for 1 month. Two-phase

mixture of VSi2 + V6Si5 was found in phase identification
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The combined CALPHAD/first-principles approach

shows its value to detect the eutectoid decomposition

temperature of V6Si5, which is confirmed experimentally to

be stable down to 500 �C. The newly obtained parameters

for the vanadium silicides provide a more precise

description of the thermodynamic stability of V6Si5.
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Fig. 4 Model-predicted phase stability diagram at 1650 K, compared

with the experimental data of Storms and Myers [9]. (Dash line is

calculated using the parameters of Luoma [4] and solid line comes

from the present work). av is the activity of Vanadium. The reference

state is bcc-V

Fig. 3 Comparison between the calculated V–Si phase diagram of

Luoma [4] (dash line) and the present work (solid line)
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